An Outlier-Based Intention Detection for Discovering Terrorist Strategies
نویسندگان
چکیده
منابع مشابه
Discovering inappropriate billings with local density based outlier detection method
This paper presents an application of a local density based outlier detection method in compliance in the context of public health service management. Public health systems have consumed a significant portion of many governments’ expenditure. Thus, it is important to ensure the money is spent appropriately. In this research, we studied the potentials of applying an outlier detection method to m...
متن کاملDiscovering the terrorist
The adoption of Visual Analytics methodologies in security applications is an approach that could lead to interesting results. Usually, the data that has to be analyzed finds in a graphical representation its preferred nature, such as spatial or temporal relationships. Due to the nature of these applications, it is very important that key-details are made easy to identify. In the context of the...
متن کاملAn Outlier Detection-Based Alert Reduction Model
Intrusion Detection Systems (IDSs) are widely deployed with increasing of unauthorized activities and attacks. However they often overload security managers by triggering thousands of alerts per day. And up to 99% of these alerts are false positives (i.e. alerts that are triggered incorrectly by benign events). This makes it extremely difficult for managers to correctly analyze security state a...
متن کاملAn outlier detection algorithm based on clustering
Outlier detection is a very important type of data mining, which is extensively used in application areas. The traditional cell-based outlier detection algorithm not only takes a large amount of time in processing massive data, but also uses lots of machine resources, which results in the imbalance of the machine load. This paper presents an distancebased outlier detection algorithm. These expe...
متن کاملFP-outlier: Frequent pattern based outlier detection
An outlier in a dataset is an observation or a point that is considerably dissimilar to or inconsistent with the remainder of the data. Detection of such outliers is important for many applications and has recently attracted much attention in the data mining research community. In this paper, we present a new method to detect outliers by discovering frequent patterns (or frequent itemsets) from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2017
ISSN: 1877-0509
DOI: 10.1016/j.procs.2017.09.006